The challenge of reconstructing a central incisor with an implant-borne restoration

Dr Michael Fischer
Benjamin Volteler
Germany

A 28-year-old female patient fractured her right central incisor in a fall. Despite immediate dental treatment, the natural tooth could not be saved and had to be extracted. A removable temporary denture was fabricated and inserted to replace the missing tooth (#11). The patient was referred to us for the placement of the implant and the subsequent prosthodontic work.

Owing to the good condition of the hard and soft tissue, pre-implantological augmentation was unnecessary. As Figure 1 clearly demonstrates, the Premillium labial extended into the implant zone. As a result, it was relocated during the implant procedure. This measure was taken to prevent gingival recession around the implant bed at a later stage. After three months of non-submerged healing, an impression was taken with a tray that allowed the proper three-dimensional positioning of the implant, and the material and design of the abutment. We prefer to use zirconium-oxide (ZrO2) abutments with a titanium base, which ensures excellent fit in the implant owing to the industrially milled titanium base. Furthermore, the ZrO2 abutment (emergence profile) can be individually customised.

The emergence profile of tooth #11 was subsequently waxed up. The wax-up was then used to create a silicone template of the palatal aspect and another one of the vestibular aspect. The abutment base (ST Astra Tech) was screwed into the laboratory analogue, and the ground emergence profile and the base were isolated (Ceramill Sep) and light-curing resin composite (Ceramill Gel, both from Girrbach) was applied (Fig. 5). Preliminary curing was considered to be necessary at this stage to achieve complete polymerisation of the light-curing material in the depth of the sulcus. Subsequently, the super-gingival part of the abutment was built up and light-cured.

In order to obtain flat surfaces and a defined preparation margin along the abutment, the cervical areas were milled para-gingivally. The labial proximal and the palatal surfaces were milled according to a conical shape with a two-degree gradient.

The gradient and the palatal surface were cut by hand. The available space was checked with the previously fabricated wax-up.

In our laboratories, the abutments are rendered in ZrO2 using the copy milling technique. Alternatives to this method can be conducted with CAD/CAM systems by using the double scan method or abutment design software.

The green body was smoothly over copy milling. A chamfer was cut at the gingival level for the subsequent creation of a ceramic shoulder. Then the restoration was shaded and sintered (Fig. 4). After the sin tering process, only very fine adjustments had to be made in order to ensure the final fit. In this case, the implant was coated with IPS e.max Ceram ZirLiner (Ivoclar Vivadent). Next, the reduced shoulder formed of IPS e.max Ceram was briefly fired on the restoration (Fig. 5). Furthermore, a thin layer of ceramic was placed over the entire ZrO2 abutment.

The abutment created in this way has three advantages. The glass-ceramic coating allows the abutment to be etched, which is a prerequisite for adhesive bonding of the crown and the abutment. Light transmission in the gingival area increases dramatically owing to the light transmission of 3 mm ZrO2 layers in the para-gingival areas of the abutment dropping to almost zero. Finally, once IPS e.max Ceram ZirLiner and the layering ceramic have been applied to the restoration, fluorescence increases significantly. Usually, the fluorescence of ZrO2 is quite low.

An important aspect of this type of abutment is the bond between the titanium base and the ZrO2. We advise against the use of popular laboratory luting agents such as Nimenti Cem or AgC Cem. A study conducted by K. Meyer, MDT, demonstrated that bonding to the ZrO2 abutment is not possible because it is exposed to oxygen.

There are several ways to prevent this problem. After the zirconium part has been attached to the bonding surface, excess composite can be completely removed and a glycerine gel (for example, AIRBLOCK DENTSPLY) applied to prevent the formation of an inhibited layer. The excess composite, on the other hand, can also be left in place. The cement joint was not cleaned after the two had been joined and the excess cement was removed with a sharp instrument after polymerisation. It is important to
PERFECT FIT BY DESIGN

In combining Soft Tissue and Bone Level implants with a comprehensive prosthetic portfolio, Straumann has devised one system for all indications. The **Straumann® Dental Implant System** - excellent product quality designed for convincing, naturally esthetic outcomes.
ROXOLID™
THE NEW “DNA” OF IMPLANT MATERIALS

ROXOLID™ – Exclusively designed to meet the needs of dental implantologists.
Roxolid™ offers
 - Confidence when placing small diameter implants
 - Flexibility of having more treatment options
 - Designed to increase patients’ acceptance of implant treatment

Asia Pacific Dental Implant Company of the Year

COMMITTED TO SIMPLY DOING MORE FOR DENTAL PROFESSIONALS
take care not to damage the re-
ment joint at this stage. Finally,
the cement joint was finished
and polished in a high gloss with
rubber polishers. Our efforts
resulted in an impeccable joint
(Fig. 7).

In the next step, the coping for the
Ips e.max lithium
disilicate glass-ceramic (Ivoclar Vivadent) was fabri-
cated. The screw access hole
was sealed (for example, with
silicone putty) and the abut-
ment was treated like a normal
abutment tooth. In other words,
it was coated with spacer (for
example, IBUKI die spacer,
Axadenta).

The coping was waxed up to
create a reduced tooth shape
(anatomically). This was done to
ensure controlled shrinkage during the
veneering step. Depending on the tooth that is
being restored, that is, depending
on its translucency and
brightness, either an Ips e.max
Press (Ivoclar Vivadent) low
translucency or a medium opaci-
ety ceramic ingot is used to
press the coping.

After the restoration had
been pressed, the screws were
removed and the coping was
carefully tried in and finished.
Foundation firing was con-
ducted before the main firing
cycle (Fig. 8) because it en-
hances the bond between the
layering material and the
pressed coping. Moreover; the
coping was characterised with
fluorescent stains in order to
create areas where the chroma
is higher right at the beginning
of the procedure. After the
characterisation step, dentine
powders, for example, were
sprinkled on the coping, which
was subsequently fired. For
foundation firing, we use a tem-
perature that is 20°C higher
than the temperature of the first
dentine firing cycle. The fired
layer contains all the internal
characteristics of the tooth.

For the second firing, the
tooth was built up slightly larger
than its ultimate size. As a
result, the shape and surface
texture of the restoration could
be adjusted to the characteris-
tics of the adjacent tooth by
grinding (Fig. 9).

During glaze firing, I main-
tained the final temperature for
only 20 seconds in order to
brighten any mat surface. The
desired level of gloss was subse-
quently achieved with a polish-
ing machine, using a wet felt
wheel and pumice. The inner
surface of the crown was not
sandblasted, as this would have
compromised its strength. After
the restoration had been tried
in, the inner surface of the crown
and the surface of the abutment
were cleaned with alcohol.

In preparation for insertion,
the ceramic surfaces were
etched (for example, with IPS
Ceramic Etching Gel, Ivoclar
Vivadent). The surface of the
abutment, which was covered
with IPS e.max Ceram (nano-
fluorapatite glass-ceramic),
showed a large retentive etch pat-
tern after a reaction time of
20 seconds (4.5% HF). The
lithium-disilicate inner side of
the all-ceramic crown was also
etched for 20 seconds. Finally,
both parts were conditioned
with silane (Monobond Plus). In
order to prevent the luting com-
pound from entering the sulcus,
a retraction cord was placed
(001 Ultrapac, Ultradent).

The restoration was seated
with a luting composite (for
example, Variolink II, Variolink
Veneer or Multilink Implant;
Ivoclar Vivadent). It is impor-
tant to note that Variolink Ve-
eneer should only be used to
place translucent crowns and
restorations with light shades
through which light can pene-
trate adequately, as this cement
requires light to polymerise.
A luting composite that cures
only when it is exposed to light
(such as Variolink Veneer) of-ers the operator the advantage
of being able to remove all ex-
cess cement without any time
constraints. Subsequently, the
material was cured from all
sides for 50 seconds (the time
depends on the curing light
used). The retraction cord was
removed and the restoration
was carefully examined with
surgical lys for any rem-
nants of excess cement. The af-
ected hard and soft tissues
were in healthy condition three
months after the crown had
been placed (Figs. 10 & 11).

Discussion

Tackling a complex abut-
ment design of this kind is only
possible if the gingival biotype is
thin and normal (according to
flans-Peter Weber and John
koio). Thin, scalled gingival
tissue (the keratinised gingiva
is 0.6 to 0.9 mm thick) is char-
acterised as follows:

- small amount of attached gin-
giva;
- triangular clinical crown with
narrow interdental contact zone;
- soft-tissue recession as a re-
tection to surgical/prosthetic
interventions;
- predisposition to formation
of defects due to resorption
processes after tooth extrac-
tion with collapse of the inter-
dental papilla; and
- outline of a periodontal probe
shows through the gingival tissue.

All these aspects have to
be taken into consideration in
order to achieve lifetime results.
If the gingival biotype is thick
(the keratinised gingiva is 1.0 to
1.5 mm thick), the sele-
cion of the abutment does
not have such a great influ-
ence on the pink aesthetics of
the restoration. In these cases,
a metal abutment or a ZrO2
abutment without an addition-
ally fired ceramic shoulder
would suffice.

Nevertheless, ZrO2 is far su-
perior as an abutment material
with regard to white aesthetics.
Unlike metal substrate materi-
als, it allows light to penetrate
from different angles (for exam-
ple, light from the side). The
thick gingival biotype exhibits
an even soft tissue and bone
architecture:

- minimal difference amongst
buccal, marginal and pro-
Ximal soft tissue and bone
heights;
- short interdental papillae;
- flirnum character of soft tissue;
tendency to scar;
- square anatomic crowns with
rounded convex surfaces;
- large contact area between
clinical crowns;
- minimal tendency to recede; and
- a periodontal probe does not
show through the gingival tissue.

Non-submerged healing

The decision to follow a non-
submerged protocol was based on
the following reasons:

1. ample time for maturation of
the soft tissue before the
prosthodontic work begins;
2. avoidance of a second surgi-
cal procedure;
3. maintenance of blood supply
to the area; and
4. reduction in the treatment
time and less inconvenience
for the patient (according to
Anthony G. Sclar).

This approach is only possi-
ble if there is adequate gingiva.
Attachment. If soft tissue has
to be augmented, submerged
healing is essential. In the pres-
ent gingival biotype, the fermen-
tum labi had to be relocated,
since it extended into the at-
tached gingiva and may have
cause the tissue to recede.

In the case discussed, an in-
ter-sulcular incision was made
without a relieving incision.
This approach allowed the
vestibular bone lamella to be
visually checked. Only very lit-
ttle connective tissue had to be
removed.

As a result, there was mini-
mal bone loss and scarring did
not occur.

Dr Michael Fischer maintains
a private dental practice in
Pfullingen in Germany. He can
be contacted at dr.michel.fischer
@web.de.

Benjamin Votteler maintains a
dental laboratory in Pfullingen
in Germany. He can be contacted at
benjamin.votteler@voteler.eu.